- Leligny, H., Labbe, Ph., Ledesert, M., Hervieu, M., Raveau, B. & McCarroll, W. H. (1993). Acta Cryst. B49, 444-454.
- Leligny, H., Ledesert, M., Labbe, Ph., Raveau, B. & McCarroll, W. H. (1990). J. Solid State Chem. 87, 35-43.
- Lindblom, B. & Strandberg, R. (1989). Acta Chem. Scand. 43, 825-828.
- McCarley, R. E. (1986). Polyhedron, 5, 51-61.
- Mattausch, H., Simon, A. & Peters, E. M. (1986). J. Am. Chem. Soc. 25, 3428-3433.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Schimek, G. L. & McCarley, R. E. (1994). J. Solid State Chem. 113, 345-354.

Shannon, R. D. & Prewitt, C. D. (1969). Acta Cryst. B25, 925-946.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Stout, G. & Jensen, L. H. (1968). In X-ray Structure Determination. London: McMillan.
 Torardi, C. C. & McCarley, R. E. (1979). J. Am. Chem. Soc. 101,
- Jorardi, C. C. & McCarley, R. E. (1979). J. Am. Chem. Soc. 101, 3963–3964.
- Torardi, C. C. & McCarley, R. E. (1981). J. Solid State Chem. 37, 393-397.

Acta Cryst. (1996). C52, 1867-1869

Lithium Dicobalt Tripolyphosphate and Lithium Dinickel Tripolyphosphate

Fatima Erragh, a,b Ali Boukhari^a and Elizabeth M. Holt^{c*}

^aLaboratoire de Chimie du Solide Appliquée, Departement de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco, ^bLaboratoire de Chimie Physique de Materiaux, Departement de Chimie, Faculté des Sciences, El Jadida, Morocco, and ^cDepartment of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA. E-mail: chememh@osucc.bitnet

(Received 16 August 1995; accepted 5 December 1995)

Abstract

Isotypic lithium dicobalt triphosphate, $LiCo_2P_3O_{10}$, and lithium dinickel triphosphate, $LiNi_2P_3O_{10}$, have been synthesized and characterized by single-crystal X-ray diffraction. These are the first observations of nonhydrated mixed-metal tripolyphosphates. The $P_3O_{10}^{5-}$ groups are situated on a mirror plane, with successive PO_3 moieties displaying both staggered and eclipsed conformations. Octahedrally coordinated Co^{2+} and Ni^{2+} ions form a staggered chain $[Co\cdots Co \ 3.286(1) \ and 3.133(1) \ Å$, $Ni\cdots Ni \ 3.201(1)$ and $3.023(1) \ Å$], with successive metal ions bridged by two O atoms.

Comment

The literature contains numerous structural studies of solid materials containing the $P_3O_{10}^{5-}$ group. Most, however, are hydrated systems in which hydrogen-bonding

interactions play a role in determining the packing, for example, Zn₅(P₃O₁₀)₂.17H₂O (Averbuch-Pouchot & Durif, 1975; Averbuch-Pouchot, Durif & Guitel, 1975), Na₅P₃O₁₀.6H₂O (Dyroff, 1965), CuNa₃P₃O₁₀.12H₂O (Jouini, Dabbabi, Averbuch-Pouchot, Durif & Guitel, 1984), NaZn₂P₃O₁₀.9H₂O (powder data; Corbridge & Tromans, 1958) and Na₃NiP₃O₁₀, 12H₂O (powder data; Corbridge & Tromans, 1958). Another group of $P_3O_{10}^{5-}$ containing complexes reflect their preparation from solution by the inclusion of ammonia in the stoichiometry of the solid, for example, (NH₄)Be₂P₃O₁₀ (Bagieu-Beucher, Durif & Averbuch-Pouchot, 1976; Averbuch-Pouchot, Durif, Coing-Boyat & Guitel, 1977). A third type of complex is both hydrated and contains NH_4^+ , for example, $(NH_4)_4NaP_3O_{10}.4H_2O$ (Averbuch-Pouchot & Durif, 1985). There are few examples of pure ceramics of the type $M_r P_3 O_{10}$. Only Ag₅P₃O₁₀ (ATD data only; Lee, 1968) and two forms of Na₅P₃O₁₀ (Corbridge, 1960; Davies & Corbridge, 1958) are known.

We have prepared the first non-hydrated mixedmetal tripolyphosphates. Lithium dicobalt tripolyphosphate and lithium dinickel tripolyphosphate are isotypic and crystallize with alternating layers of metal atoms and tripolyphosphate groups. The $P_3O_{10}^{5-}$ groups are situated on a mirror plane passing through the P atoms, the bridging O atoms and one O atom of each terminal group. The central P atom of each $P_3O_{10}^{5-}$ group is eclipsed with one neighboring PO₄ group and shows a staggered arrangement of O atoms with the other neighboring group. P-O-P angles between staggered oxyphosphorus groups are large $[143.3(2) \text{ and } 142.5(3)^{\circ}]$ for the Co and Ni structures, respectively], but smaller when the adjacent groups are eclipsed [124.8(3) and $126.4(3)^{\circ}$ for the Co and Ni structures, respectively] (Fig. 1).

Fig. 1. View of the P_3O_{10} group of lithium dicobalt tripolyphosphate showing the conformation. Displacement ellipsoids are plotted at the 50% probability level.

The transition metal atoms display distorted octahedral coordination geometry with no visible Jahn-Teller distortion for Co [average Co-O 2.136 (3) Å and average Ni-O 2.074 (3) Å]. The Co and Ni octahedra share edges to form staggered chains. These chains are bridged by edge-sharing octahedral lithium motifs (Fig. 2). The Li atoms are situated on inversion centers with four O-atom near neighbors [average Li-O 2.066 (3) and 2.041 (3) Å for the Co and Ni complexes, respectively] and two distant ones [Li-O 2.961 (3) and 2.907 (3) Å for the Co and Ni complexes, respectively].

Fig. 2. A projection view of the metal layer of lithium dicobalt tripolyphosphate showing the bonded O atoms.

These structures may be compared with those of $Na_5P_3O_{10}$, in which $P_3O_{10}^{5-}$ ions crystallize with a twofold axis (through the central P atom), a staggered conformation of adjacent tetrahedra is found (P-O-P 122 and 121°) and the $P_3O_{10}^{5-}$ ions are distorted from mirror symmetry. The two allotropic forms of Na₅P₃O₁₀ differ in the coordination geometry of Na, one containing Na atoms in octahedral coordination and the second showing both four- and sixfold coordination of the Na atoms.

Experimental

LiCo₂P₃O₁₀ was prepared by fusion of a mixture of CoCl₂.6H₂O, Li₂CO₃ and (NH₄)₂HPO₄ in a stoichiometry calculated to produce Li₂CoP₂O₇. Crystalline material was obtained on heating the mixture to 1123 K in a quartz crucible followed by slow cooling (3 K h^{-1}). LiNi₂P₃O₁₀ was prepared in a similar manner using NiCl₂.6H₂O instead of CoCl₂.6H₂O.

LiCo ₂ P ₃ O ₁₀		Li1011 ^{vi} P1011	2.009 (3) 1.527 (4)	P3	1.626
Crystal data LiCo ₂ P ₃ O ₁₀ $M_r = 377.7$ Monoclinic $P2_1/m$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 45 reflections	Symmetry codes: (i) x (iv) $1 + x, y, z$; (v) $1 + z$ x - 1, y, 1 + z. LiNi ₂ P ₃ O ₁₀	− 1, <i>y</i> , <i>z</i> ; (ii) − <i>x</i> , <i>y</i> , <i>z</i> − 1; (vi)	$(1-x, -y, 1-z; (iii) - y, -z; (vii) x, \frac{1}{2})$	x, -y, -y, z;
a = 4.655 (2) Å b = 8.565 (3) Å c = 9.103 (3) Å $\beta = 97.80 (1)^{\circ}$ $V = 359.4 (2) \text{ Å}^{3}$ Z = 2 $D_{x} = 3.490 \text{ Mg m}^{-3}$	$\theta = 10.2-12.85^{\circ}$ $\mu = 5.329 \text{ mm}^{-1}$ T = 298 K Chunk $0.1 \times 0.1 \times 0.1 \text{ mm}$ Blue-purple	Crystal data LiNi ₂ P ₃ O ₁₀ $M_r = 377.3$ Monoclinic $P2_1/m$ a = 4.576 (1) Å b = 8.356 (1) Å		Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters fror reflections $\theta = 10.4 - 12.5^{\circ}$ $\mu = 6.334 \text{ mm}^{-1}$ T = 298 K	om 45
Data collection Syntex P4 automated diffractometer $\theta/2\theta$ scans	610 observed reflections $[F > 4.0\sigma(F)]$ $R_{int} = 0.0371$	c = 8.921 (1) A $\beta = 98.08 (1)^{\circ}$ $V = 337.77 (5) \text{ Å}^{3}$ Z = 2 $D_{x} = 3.709 \text{ Mg m}^{-1}$	3	Plate $0.3 \times 0.3 \times 0.08$ Yellow	mm

Absorption correction: semi-empirical from ψ scans (XEMP; Siemens, 1991)

 $T_{\rm min} = 0.65, \ T_{\rm max} = 0.72$ 1054 measured reflections 680 independent reflections

Refinement

 $\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$ Refinement on F $\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.034Extinction correction: none wR = 0.046S = 1.13Atomic scattering factors from International Tables 680 reflections 86 parameters for X-ray Crystallography $w = 1/[\sigma^2(F) + 0.0008F^2]$ (1974, Vol. IV, Table $(\Delta/\sigma)_{\rm max} < 0.001$ 2.2B)

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -1 \rightarrow 5$

 $k = -1 \rightarrow 10$

 $l = -10 \rightarrow 10$

3 standard reflections

reflections intensity decay: <5%

monitored every 97

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $LiCo_2P_3O_{10}$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	х	у	z	U_{eq}
Col	0.0379(1)	0.0671(1)	0.3346(1)	0.024(1)
P1	0.4616(3)	1/4	0.1433 (2)	0.022 (1)
P2	-0.6675 (3)	1/4	0.8227 (2)	0.023(1)
P3	-0.3970(3)	1/4	0.5361 (3)	0.023 (1)
011	0.2861 (6)	0.1012 (4)	0.1564 (3)	0.028(1)
012	0.7615 (9)	1/4	0.2385 (4)	0.026(1)
021	-0.4343 (9)	1/4	0.7111 (4)	0.028(1)
O22	-0.4433 (9)	1/4	0.9743 (4)	0.024 (8)
O23	-0.8404 (7)	0.1006 (4)	0.8140(3)	0.029(1)
031	-0.2267 (6)	0.1002 (4)	0.5151(1)	0.025(1)
032	-0.6999 (9)	1/4	0.4465 (4)	0.024 (1)
Lil	0	0	0	0.047 (5)

Table 2. Selected geometric parameters (Å) for

LI	c_{o}	$p_2 \mathbf{r}$	30	10

Col-011	2.136 (3)	P1011 ^{vii}	1.527 (4)
Co1-O31	2.201 (3)	P1012	1.540 (4)
Col O121	2.138 (3)	P1 ^{viii} —O22	1.658 (4)
Col-O23"	2.098 (3)	P2	1.584 (5)
Col-O31 ^m	2.090 (3)	P2	1.508 (4)
Col-O32"	2.155 (3)	P2—O22	1.613 (4)
Li1—011	2.009 (3)	P2-023 ^{vn}	1.508 (4)
Li1—023"	2.122 (3)	P3031 ^{\u0}	1.534 (3)
Li1—023`	2.122 (3)	P3-031	1.534 (3)
Li1—O11 ^{vi}	2.009 (3)	P3-021	1.626 (4)
P1011	1.527 (4)	P3—O32	1.530(4)

1 - z;;; (viii)

Data collection	
Syntex P4 automated	792 observed reflections
diffractometer	$[F > 6.0\sigma(F)]$
$\theta/2\theta$ scans	$R_{\rm int} = 0.0355$
Absorption correction:	$\theta_{\rm max} = 23.0^{\circ}$
semi-empirical from ψ	$h = -1 \rightarrow 6$
scans (XEMP; Siemens,	$k = -1 \rightarrow 11$
1991)	$l = -12 \rightarrow 12$
$T_{\min} = 0.25, T_{\max} = 0.68$	3 standard reflections
1368 measured reflections	monitored every 97
931 independent reflections	reflections
	intensity decay: <5%

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 1.80 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.052	$\Delta \rho_{\rm min} = -1.74 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.063	Extinction correction: none
S = 1.20	Atomic scattering factors
931 reflections	from International Tables
86 parameters	for X-ray Crystallography
$w = 1/[\sigma^2(F) + 0.0008F^2]$	(1974, Vol. IV, Table
$(\Delta/\sigma)_{\rm max} = 0.006$	2.2B)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for LiNi₂P₃O₁₀

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	У	z	U_{eq}
Nil	0.0366 (1)	0.0691(1)	0.3363(1)	0.007(1)
Lil	0	0	0	0.030(4)
P1	0.4637 (3)	1/4	0.1452(1)	0.006(1)
P2	-0.6669 (3)	1/4	0.8209(1)	0.006(1)
P3	-0.3979 (3)	1/4	0.5346(1)	0.006(1)
011	0.2891 (6)	0.0985 (3)	0.1597 (3)	0.008(1)
012	0.7700 (9)	1/4	0.2381 (4)	0.009(1)
021	-0.4319 (10)	1/4	0.7100(4)	0.011(1)
O22	-0.4459 (9)	1/4	0.9756 (4)	0.008 (1)
O23	-0.8400 (7)	0.0985 (3)	0.8107 (3)	0.010(1)
O31	-0.2283 (6)	0.0972 (3)	0.5129 (3)	0.008 (1)
O32	-0.7074 (9)	1/4	0.4462 (4)	0.009(1)

Table 4. Selected geometric parameters (Å) for

$LiNi_2P_3O_{10}$				
2.059 (3)	P1-011 ^{vii}	1.513 (3)		
2.040 (3)	P1 ^{viii} —O22	1.624 (4)		
2.044 (3)	P1-012	1.525 (4)		
2.132 (3)	P2-021	1.560 (4)		
2.095 (3)	P2—O22	1.592 (4)		
2.072 (3)	P2-023	1.489 (3)		
1.982 (3)	P2-023 ^{vin}	1.489 (3)		
2.100(3)	P3-021	1.594 (4)		
1.982 (3)	P3-032	1.521 (4)		
2.100 (3)	P3-031	1.521 (3)		
1.513 (3)	P3-031 ^{vii}	1.521 (3)		
	<i>L1/V12F</i> 2.059 (3) 2.040 (3) 2.044 (3) 2.132 (3) 2.095 (3) 2.072 (3) 1.982 (3) 2.100 (3) 1.982 (3) 2.100 (3) 1.513 (3)	<i>LlNl</i> ₂ <i>P</i> ₃ <i>O</i> ₁₀ 2.059 (3) P1O11 ^{vii} 2.040 (3) P1 ^{vii} -O22 2.044 (3) P1O12 2.132 (3) P2O21 2.095 (3) P2O22 2.072 (3) P2O23 1.982 (3) P2O23 ^{vii} 2.100 (3) P3O21 1.982 (3) P3O31 1.513 (3) P3O31 ^{vii}		

Symmetry codes: (i) x - 1, y, z; (ii) -1 - x, -y, 1 - z; (iii) -x, -y, 1 - z; (iv) 1 + x, y, z; (v) 1 + x, y, z - 1; (vi) -x, -y, -z; (vii) x, $\frac{1}{2} - y$, z; (viii) x - 1, y, 1 + z.

A variable scan rate was used with a scan width of 1.2° below $K\alpha_1$ and 1.2° above $K\alpha_2$. Refinement was completed using full-matrix least-squares methods.

For both compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXTL-Plus (Sheldrick, 1992); molecular graphics: XP (Siemens, 1990).

The authors express their thanks to the National Science Foundation for assistance in the form of a grant to permit collaborative investigation and to the Moroccan–American Commission for a Fulbright grant to EMH.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1124). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Averbuch-Pouchot, M. T. & Durif, A. (1975). J. Appl. Cryst. 8, 564.Averbuch-Pouchot, M. T. & Durif, A. (1985). Acta Cryst. C41, 1553–1555.
- Averbuch-Pouchot, M. T., Durif, A., Coing-Boyat, J. & Guitel, J. C. (1977). Acta Cryst. B33, 203–205.
- Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. (1975). Acta Cryst. B31, 2482-2486.
- Bagieu-Beucher, M., Durif, A. & Averbuch-Pouchot, M. T. (1976). J. Appl. Cryst. 9, 412.
- Corbridge, D. E. C. (1960). Acta Cryst. 13, 263-269.
- Corbridge, D. E. C. & Tromans, E. R. (1958). Anal. Chem. 30, 1101-1110.
- Davies, D. R. & Corbridge, D. E. C. (1958). Acta Cryst. 11, 315-319.
- Dyroff, D. R. (1965). Thesis, University of California, USA.
- Jouini, O., Dabbabi, M., Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. (1984). Acta Cryst. C40, 728–730.
- Lee, J. D. (1968). J. Chem. Soc. pp. 2881-2882.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1992). SHELXTL-Plus. Release 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990). XP. Interactive Molecular Graphics Program. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 1869-1872

Zigzag Chain Structure of Hexaammonium Enneamolybdate Pentahydrate

TOSHIHIRO YAMASE, MORIYASU SUGETA AND ERI ISHIKAWA

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatuta Midori-ku, Yokohama 226, Japan

(Received 23 July 1995; accepted 21 November 1995)

Abstract

The title compound, $(NH_4)_6[Mo_9O_{30}].5H_2O$, contains an $\{[Mo_8O_{26}(MoO_4)]^{6-}\}_n$ anion with a zigzag chain structure, in which two adjacent Mo_8O_{26} moieties are linked by an MoO₄ tetrahedron.